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A B S T R A C T

A novel thiourea-based chemosensor THB (N-benzhydryl-2-(thiophene-2-carbonyl)hydrazine-1-carbothioamide)
was designed and investigated. THB had the capability to detect zinc ion and hypochlorite in a near-perfect
aqueous media via different fluorescent emission channels. Limits of detection (LOD) were determined to be
0.67 µM for zinc ion and 0.28 µM for hypochlorite. Importantly, THB could successfully monitor both zinc ion
and hypochlorite in zebrafish. Response mechanisms of THB to zinc ion and hypochlorite were demonstrated by
1H NMR titrations, theoretical calculations, fluorescent and UV–vis spectral variations, and ESI-mass.

1. Introduction

The research on chemosensors for detecting diverse metal ions and
anions has attracted much attention due to their wide applicability in
biological, pathological, and industry environments [1,2]. Among the
various metal ions, zinc ion is the second plentiful metal element in the
human body and plays critical roles in metabolism including enzymatic
reactions, brain functioning, DNA organization, and gene expression
[3,4]. However, the disorder of zinc metabolism adversely affects brain
functioning, blood cholesterol level, hair, and skin health [5–7] and
also causes neurogenic diseases like Alzheimer's disease [8,9]. Thus, it
is greatly significant to design chemosensors for monitoring zinc.

Hypochlorite, as a potential oxidant in ROS (reactive oxygen spe-
cies), is generally produced from the peroxidation reaction between
H2O2 and Cl− in living organisms with the assistance of myeloperox-
idase [10–12]. Hypochlorite plays critical roles in the immune defense
of pathogen invasion [13,14]. However, the uncontrolled generation of
hypochlorite may induce many problems such as neurodegenerative
disorders and damage of tissue and organ [15,16]. In addition, water
containing residual Cl− adversely affects the blood circulation and
nervous system [17,18]. Thus, it is of significant interest to study
chemosensor for recognizing hypochlorite in water.

Among the various analytical tools, fluorometric analysis is a sig-
nificantly preferred optical tool due to their high selectivity, sensitivity,
fast response, and especially the capability of bioimaging [19–21]. To
date, a number of fluorescence chemosensors for monitoring zinc or
hypochlorite have been reported [22–28] and some of them have the

capability to monitor the analytes in vitro and in vivo [29–35]. How-
ever, any fluorescent chemosensor detecting both zinc ion and hypo-
chlorite has not been reported yet.

Thiourea has drawn much interest due to its diverse biological
properties and ability as a recognition group toward various analytes
[5,36,37]. Because the thiourea contains nitrogen, oxygen and sulfur
atoms acting as electron-donor atoms, it has an excellent chelating
capability to metal ions [38–41] and could undergo oxidation reaction
by ROS like ClO− [42–44]. Therefore, we expected that a thiourea-
based chemosensor could chelate metal ions and respond to ROS like
hypochlorite by oxidation.

Herein, we developed a thiourea-based fluorescent chemosensor
THB which could detect both zinc ion and hypochlorite. In addition,
THB had a great capability to detect both zinc ion and hypochlorite in
vivo. The response mechanisms of THB to zinc ion and hypochlorite
were demonstrated, based on 1H NMR titrations, theoretical calcula-
tions, fluorescent and UV–vis spectral variations, and ESI-mass.

2. Experiments

2.1. General information

All reagents were provided commercially. 1H NMR and 13C NMR
were collected on a Varian spectrometer. Absorption and fluorescent
spectra were collected on Perkin Elmer spectrometers. Quadrupole ion
trap instrument was employed to get ESI-mass data. Agilent Cary 670
spectrometer was employed to obtain FT-IR spectra.
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2.2. Synthesis of N-benzhydryl-2-(thiophene-2-carbonyl)hydrazine-1-
carbothioamide (THB)

Thiophene-2-carbohydrazide (0.17 g, 1.2 × 10−3 mol) was dis-
solved in 6 mL of ethanol and benzhydryl isothiocyanate (0.23 g,
1.0 × 10−3 mol) was added into the solution. With stirring for 1 d,
white precipitation was formed, filtered, and washed with diethyl ether
and ethanol (yield: 78%). MP (melting point): 113–118 °C. 1H NMR
(400 MHz, DMF-d7), δ (ppm): 10.51 (s, 1H), 9.52 (s, 1H), 9.16 (s, 1H),
7.91 (m, 1H), 7.88 (d, J = 4.8 Hz, 1H), 7.35 (m, 7H), 7.29 (m, H), 7.21
(m, 1H), 7.14 (s, 1H). 13C NMR (100 MHz, DMF-d7), δ (ppm): 142.52
(1C), 138.50 (1C), 132.45 (2C), 130.33 (1C), 129.05 (2C), 128.90 (5C),
128.72 (4C), 127.86 (2C), 61.56 (1C). FT-IR (KBr) for THB (cm−1):
NeH (3367, 3308, 3203); C = O (1656); C = S (1526); CeN (1231).
ESI-MS for [THB+H+]+: found, 368.0097; [C19H17N3OS2+ H+]+

requires [THB+H+]+ 368.0886.

2.3. Fluorescent and UV-visible spectral measurements

All fluorescence and UV-visible experiments were performed in PBS
buffer (10 mM, pH 7.4). A THB stock (5 mM) was prepared in DMSO
and the concentration of THB used in the experiments was 20 μM for
zinc (Ⅱ) and 10 μM for hypochlorite, respectively. All the cation and
anion stocks were prepared in bis-tris buffer and ROS stocks were
prepared in distilled water. Fluorescent and UV–vis spectral variations
for zinc (Ⅱ) and hypochlorite were measured by adding corresponding
concentrations of the analytes to THB solution and mixing them for
10 s.

2.4. Quantum yields

The quantum yields of THB and THB-Zn2+, THB-ClO− were de-
termined with quinine (Φ = 0.54 in 100 mM H2SO4 solution) as a re-
ference fluorophore [45]. The quantum yields were calculated with the
following equation [46].
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×
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ΦF = fluorescence quantum yield
A = absorbance
F = integrated fluorescence emission
n = refractive index of the solution
S = test sample
R = reference material

2.5. 1H NMR titrations

For zinc (Ⅱ), the four NMR glass tubes of THB (4.9 mg,
2 × 10−5 mol) dissolved in DMF-d7 (1.0 mL) were prepared. Various
amounts (0, 0.5, 1, and 2 equiv) of zinc (Ⅱ) were added into the NMR
tubes of THB. After mixing them for 10 s, the 1H NMR spectra were
gained. For hypochlorite, the four NMR tubes of THB (4.9 mg,
0.02 mmol) dissolved in DMF-d7 (1.0 mL) were prepared. Various
amounts (0, 0.5, 2, and 5 equiv) of hypochlorite were transferred to the
NMR tubes of THB, respectively. After mixing them for 10 s, the 1H
NMR spectra were gained.

2.6. Analysis of hypochlorite

The sample solutions were gained from the drinking water and tap
water in our laboratory. 12 μL of THB stock (5 mM) and 0.30 mL of PBS
buffer (1 × 10−2 M) were added into 2.688 mL sample solutions
containing hypochlorite. After blending them for 10 s, fluorescence
spectra were gained.

2.7. Imaging experiments in zebrafish

Zebrafish were cultured at 28.5 °C under previously reported con-
ditions [47]. The 6-day-old zebrafish were prepared and three zebrafish
groups were treated with THB (5 × 10−6 M) in E2 media having 0.05%
DMSO for 20 min and then washed with E2 media to remove the re-
maining THB. Except for a control group, two groups were further
treated with the solution containing 5 and 10 μM of Zn2+ for 20 min
and then washed with E2 media to remove the remaining Zn2+. Ethyl-
3-aminobenzoate methanesulfonate was used for the secured orienta-
tion of zebrafish. The fluorescence images were acquired with a Leica
fluorescence microscope and the mean intensity was determined by Icy
software. The similar procedures were performed for hypochlorite.

2.8. Cytotoxicity in zebrafish

The cytotoxicity in zebrafish upon treatment with THB was mea-
sured by acridine orange (AO) staining. The 6-day-old zebrafish were
prepared and exposed to 0 and 50 μM of THB in E2 media having 0.5%
of DMSO for 20 min. These zebrafish were exposed to 10 μg/mL of AO
reagent (Sigma-Aldrich, St. Louis, MO, USA) in E2 media for 60 min.
After the zebrafish were washed with E2 media three times, the fluor-
escence images were acquired under a Leica fluorescence microscope
(MZ10F, Singapore).

2.9. Theoretical studies

The sensing mechanism of THB to Zn2+ and ClO− was studied by
the calculation with Gaussian 09 software [48]. Geometric optimiza-
tions and DFT (density functional theory) calculations [49,50] were
performed at the B3LYP/6–311 G/LANL2DZ level [51–55] and CPCM
was employed to consider the effect of solvent water [56,57].

3. Results and discussion

THB was produced from the nucleophilic addition reaction of
thiophene-2-carbohydrazide and benzhydryl isothiocyanate (Scheme 1)
and verified by ESI-mass, FT-IR, 1H NMR and 13C NMR analysis (Fig.
S1).

3.1. Fluorescent and UV-visible studies of THB to zinc (Ⅱ)

To evaluate the sensing ability of THB, fluorescent response of THB
to diverse metal ions was studied (Fig. 1). THB showed no fluorescence
emission around 465 nm. Upon the addition of Zn2+, THB showed a
remarkable fluorescence emission at 465 nm with a sky-blue fluores-
cence color (10 mM PBS buffer pH 7.4; λex = 345 nm, λem = 465 nm,
Stokes shift = 120 nm, t1/2 = 2 h). In contrast, the addition of other
metals displayed no or small spectral variation. These results indicated

Scheme 1. Synthesis of THB.
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that THB was capable of being a selective fluorescent chemosensor for
Zn2+.

The sensing phenomena of THB to Zn2+ were studied by the ex-
amination of fluorescent and UV-visible variations. Upon addition of
Zn2+ (0–1.1 equiv), the fluorescence at 465 nm was consistently en-
hanced (Fig. 2). Quantum yields of THB and THB-Zn2+ turned out to be
0.0269 and 0.0704, respectively. Under the same condition, UV–vis
spectral variations were studied (Fig. S2; λmax = 322 nm,
εmax = 5775.42 mol−1 dm3 cm−1). A gradual increase of the absor-
bance at 322 nm and a decrease of the absorbance at 245 nm were
observed with a definite isosbestic point at 256 nm. It meant the gen-
eration of a species between THB and Zn2+.

Job plot was examined for understanding the mode of complexation
between THB and Zn2+ (Fig. 3). The highest emission at 465 nm was
shown at a mole fraction of 0.7, indicating a 2 to 1 ratio of THB and
Zn2+. It was supported by ESI-mass (Fig. S3). The peak of 797.0071 (m/
z) corresponded to [2•THB-H+ + Zn2+]+ (calcd; 797.0834). With the
fluorescence data, the detection limit for Zn2+ was calculated to be
0.67 μM by using the definition of IUPAC (CDL = 3σ/K) [58], which is
far lower than WHO protocol (76 μM) (Fig. S4). [59]. The association
constant of THB with Zn2+ was gained to be 2 × 1010 M − 2

(R2 = 0.9903) based on Li's equation (Fig. S5).
1H NMR titrations were conducted to understand the complexation

of THB to Zn2+ (Fig. S6). Upon the addition of Zn2+ of 0.5 equiv, most
proton peaks showed down-field shifts. With the more addition of Zn2+

up to 2 equiv, the integration of -NH (H4 and H4’) reduced to half,
meaning deprotonation of one H4 of 2•THB by binding to Zn2+. These
results demonstrated that the sulfur atoms and -NH were highly asso-
ciated with the binding to Zn2+. We proposed the response mechanism
of THB to Zn2+, based on Job plot, ESI-mass, and 1H NMR titrations
(Scheme 2).

Competition experiment was performed to study a sensing cap-
ability of THB to Zn2+ (Fig. S7). Most metal ions didn't show inhibition
in the fluorescence emission of THB to Zn2+. However, the presence of
Fe2+, Hg2+, and Co2+ showed the inhibition of 10 to 50%, and Cu2+

and Cr3+ nearly inhibited. The pH test of THB to Zn2+ was examined at
the pH range of 6 to 8 (Fig. S8). The addition of Zn2+ induced the
enhancement of fluorescence emission of THB at the pH range of 7 and
8, suggesting that THB does not operate as a Zn2+ sensor under the
acidic condition. The sulfur atom of THB might be protonated under the
acidic condition. Therefore, it is difficult for Zn2+ to bind to the pro-
tonated sulfur atom.

3.2. Fluorescence and UV–vis studies of THB to hypochlorite

Fluorescent response of THB to various anions and ROS was studied
(Fig. 4). In the presence of ClO−, THB showed marked fluorescence
emission at 380 nm with deep blue fluorescence color (10 mM PBS
buffer pH 7.4; λex = 300 nm, λem = 380 nm, Stokes shift = 80 nm). By
contrast, no spectral variation was observed with other anions and ROS,
demonstrating that THB could be a highly selective fluorescent che-
mosensor for hypochlorite.

The sensing properties of THB to ClO− were explored by fluorescent

and UV–vis spectral variations. With the addition of ClO− (0–14 equiv),
continuous enhancement of the fluorescence emission band at 380 nm
was observed (Fig. 5). Quantum yields of THB and THB-ClO− were
determined to be 0.0132 and 0.9192, respectively. Under the same
condition, UV–vis spectral variations were inspected (Fig. S9;
λmax = 298 nm, εmax = 1155.83 mol−1 dm3 cm−1). The gradual ad-
dition of ClO− induced a marked increase of the absorbance at 300 nm
and a decrease at 240 nm with a clear isosbestic point at 277 nm. It
meant the production of a species between THB and ClO−.

1H NMR titrations were conducted to understand the response re-
action of THB to ClO− (Fig. S10). Upon the addition of ClO− up to 5
equiv, the protons H4, H5, and H6 gradually disappeared and the rest
protons showed up-field shifts, meaning deprotonation of the -NH
groups by ClO−. To further understand these phenomena, negative ESI-
MS was carried out (Fig. S11). The peak of m/z 366.2500 was found and
corresponded to [C19H14N3O2S− + H2O]− (calcd; 366.0912), in-
dicating the deprotonation of the -NH groups and the oxidation of the
thionyl moiety to the carbonyl one by ClO−. These results led us to
conclude that THB responded to ClO− through the deprotonation and
oxidation reaction (Scheme 3).

Competition test was examined to explore a sensing capability of
THB to hypochlorite (Fig. 6). The presence of diverse anions and ROS
showed no or a neglectable inhibition in the fluorescence emission,
implying that the sensing capability of THB to ClO− was not nearly
affected by other analytes. The pH test of THB to ClO− was performed
at the pH range of 6 to 8 (Fig. S12). With the addition of ClO−, THB
showed the clear enhancement of fluorescence emission at the pH range
of 7 and 8, suggesting that THB does not operate as a ClO− sensor
under the acidic condition. That is, HClO species produced from the
binding of H+ and ClO− under the acidic condition is not competent to
the deprotonation and oxidation of THB.

To explore the quantitative sensing capability of THB, a calibration
plot was obtained with a satisfactory linearity (R2 = 0.9996) (Fig. S13).
On the basis of this plot, the detection limit turned out to be 0.28 μM by
using the definition of IUPAC (CDL = 3σ/k) [58]. The potential ap-
plicability of THB toward ClO− was tested in real samples (Table 1). In
both tap water and drinking water, suitable recoveries and R.S.D. va-
lues were obtained, implying that THB has great applicability for de-
tecting ClO− in real samples.

3.3. Bioimaging application in zebrafish

To study the bioimaging applications of THB to Zn2+and ClO−,
fluorescent imaging experiments were performed in zebrafish (Figs. 7
and 8). The zebrafish treated with THB showed negligible fluorescence
emission in the green channel. With the further treatment of Zn2+ (5
and 10 μM), the strengthened fluorescence emission was shown in the
swim bladder and eyes of zebrafish. In the swim bladder, the mean
fluorescence intensity and detection limit (4.63 μM) were obtained by
using icy software (Fig. S14). Under the same condition, the further
treatment of ClO− (5 and 10 μM) induced strengthened fluorescence
emission in the tail and swim bladder of zebrafish. The mean fluores-
cence intensity was obtained in tail and detection limit was gained to be

Scheme 2. Response mechanism of THB to zinc ion.
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0.51 μM (Fig. S15). The cytotoxicity study was examined by AO
staining. As shown in Fig. S16, there is no difference in bright spots of
two AO-stained groups of zebrafish. These results implied that THB
with no toxicity could be applied to fluorescent imaging of both Zn2+

and ClO− in vivo.

3.4. Theoretical studies

1H NMR titrations and ESI-mass results led us to optimize possible
structures of THB, THB-Zn2+ and THB-ClO−. Optimized structures are
shown in Fig. 9. THB having a twisted structure had a dihedral angle
close to the right angle (1C, 2 N, 3 N, 4C = −99.002° and 5S, 6 N, 7 N,
8O = −81.091°). The optimized THB-Zn2+ showed that both the ni-
trogen and sulfur atoms in THB were used as binding sites to zinc ion
(1C, 2 N, 3 N, 4C = 171.805°). In the case of THB-ClO−, the

substitution of the sulfur atom in thiourea moiety to oxygen atom and
the deprotonation of H4, H5, and H6 generated a double bond between
two nitrogen atoms. The investigation of possible twenty transition
states was proceeded by TD-DFT, a cost‐effective tool for calculating the
electronic transitions of molecules. The molecular orbitals were ana-
lyzed, on the basis of the major transition state well matched with the
experimental results. The major transitions of THB at 254.52 nm
stemmed from HOMO-6 and HOMO-3 to LUMO transitions, and their
characteristics consisted of dominant π-π* transition in the thiophene
and small portion of ICT (intramolecular charge transfer) from the di-
phenylmethane to the thiophene moiety (Figs. S17 and S18). Similar to
THB, the charge transfer character of THB-Zn2+ at 305.85 nm was
dominated by π-π* transition and ICT character as well (HOMO-2→
LUMO and HOMO→LUMO+1) (Figs. S18 and S19). Given that the
transition characters of THB and THB-Zn2+ were analogous and the
angle of the THB in the complex has become more rigid, the fluores-
cence turn-on mechanism for THB-Zn2+ would be CHEF (chelation-

Scheme 3. Response mechanism of THB to hypochlorite.

Fig. 1. Fluorescence response of THB toward diverse metal ions. Inset:
Fluorescent image of THB and THB-Zn2+.

Fig. 2. Fluorescence spectral variations of THB (20 uM) in the presence of
different concentrations of Zn2+.

Fig. 3. Job plot analysis of THB with Zn2+ (20 μM).

Fig. 4. Fluorescence response of THB toward diverse analytes. Inset:
Fluorescent image of THB and THB-ClO−.
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enhanced fluorescence) effect [46]. Non-radiative transitions, such as
vibrations and rotations, presented in THB might be inhibited and
converted to radiative transition by chelation with Zn2+.

Substituted from the sulfur atom to oxygen atom in THB, THB-ClO−

exhibited the main absorption at 277.60 nm which consisted of HOMO-
8 → LUMO and HOMO-7 → LUMO transitions (Figs. S20 and S21). In
the transition states, only π-π* transition character near the thiophene
moiety was observed. Therefore, the elimination of protons and the
oxidation of the thionyl to the carbonyl moiety by ClO− resulted in
blocking ICT process from the diphenylmethane to the thiophene. The
inhibition of ICT, non-radiative process, would induce radiative tran-
sition, especially fluorescence emission [60]. To sum up, we proposed
the plausible sensing mechanisms of Zn2+ and ClO− by THB, based on
experimental and theoretical results (Schemes 2 and 3).

4. Conclusion

A new bifunctional fluorescent turn-on chemosensor THB was de-
veloped. THB could detect both zinc ion and hypochlorite for the first
time, showing obvious fluorescence emissions. The detection limits of
zinc ion and hypochlorite turned out to be 0.67 µM and 0.28 µM, which
were lower than WHO protocols. In addition, THB showed the quan-
titative sensing ability for hypochlorite in real samples. Particularly,
THB could be applied as a bioimaging fluorescent chemosensor for both
Zn2+ and hypochlorite in vivo. The response mechanisms to zinc ion
and hypochlorite were demonstrated by various spectroscopic out-
comes and theoretical calculations.
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Fig. 5. Fluorescence spectral variations of THB (10 uM) in the presence of
different concentrations of ClO−.

Fig. 6. Fluorescence intensity (380 nm) of THB toward ClO− in the presence of
diverse analytes.

Table 1
Analysis of ClO−.a.

Sample ClO− added
(μM)

ClO− found
(μM)

Recovery (%) R.S.D (n = 3)
(%)

Tap water 0.00 0.00 – –
5.00 4.97 99.33 1.57

Drinking water 0.00 0.00 – –
5.00 5.07 101.44 0.79

a Conditions: [THB] = 10 μM in PBS buffer (pH = 7.4, 10 mM).

Fig. 7. Fluorescence images of zebrafish (6-day-old) treated with THB, followed
by addition of Zn2+. (a1-a3): THB only; (b1-b3): THB with 5 μM Zn2+; (c1-c3):
THB with 10 μM Zn2+. [THB] = 5 μM. Scale bar: 1.03 mm.

Fig. 8. Fluorescence images of zebrafish (6-day-old) treated with THB, followed
by addition of ClO−. (a1-a3): THB only; (b1-b3): THB with 5 μM ClO−; (c1-c3):
THB with 10 μM ClO−. [THB] = 5 μM. Scale bar: 1.03 mm.
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