DOI: 10.1002/slct.201900199

Analytical Chemistry

Cinnamaldehyde-Based Chemosensor for Colorimetric Detection of Cu²⁺ and Hg²⁺ in a Near-Perfect Aqueous Solution

Hanna Cho, Ju Byeong Chae,* and Cheal Kim*[a]

A cinnamaldehyde-based colorimetric chemosensor TAA (N'-((1E,2Z)-3-(4-(dimethylamino)phenyl)allylidene)thiophene-2-carbohydrazide) was newly developed. TAA can detect Cu²⁺ and Hg²⁺ ions by different color changes from pale yellow to deep yellow and orange, respectively, in aqueous media. TAA differently binds to Cu²⁺ as a 1:1 ratio and Hg²⁺ as a 2:1 ratio. The detection limits towards both analytes turned out to be $0.08 \, \mu M$ for Cu^{2+} and $0.01 \, \mu M$ for Hg^{2+} . Moreover, **TAA** could successfully quantify Cu²⁺ and Hg²⁺ in tap and drinking water. The detection processes of TAA towards Cu²⁺ and Hg²⁺ were demonstrated by using DFT calculations.

Introduction

Quite recently, a number of detection methods for metal ions have been developed.^[1,2] These methods, like stripping voltammetry, atomic absorption spectroscopy and inductively coupled plasma, could detect effectively metal ions, but need skilled operators and complicate procedures.[2-4] On the contrary, colorimetric detection using chemosensors has been known as a cost-effective tool due to easy detection via naked-eye without expensive equipment.[5-7] Thus, it is really needed to develop effective and selective colorimetric chemosensors for metal ions.[8-11]

Detection of copper and mercury has attracted high attention in the field of chemosensors, [12-15] because of their environmental and biological influence. Copper is an essential transition metal in living organisms, [16,17] but the pollution of copper in the atmosphere or soil could have negative effects to them.^[18,19] The exposure to high concentrations of copper ions for long periods is known to cause hemolytic anemia, hepatitis and Parkinson's disease. [20-22] Mercury is a well-known toxic transition metal.[23-25] Recent reports highlighted the affection of mercury pollution towards not only soil bacteria and fungi but also human beings.[26-28] Therefore, the development of effective and selective chemosensors for copper and mercury is highly demanded.[29-32]

Many chemosensors for detecting Cu²⁺ or Hg²⁺ have been developed, and some of them show very low detection limits like nanomolar and attomolar concentrations. $^{[11,15,16,22,23,25]}$ On the other hand, chemosensors for detecting both Cu²⁺ and Hg²⁺ by a colorimetric method have been recently developed using several chromophores such as BODIPY,[33-35] pyrene,[36,37] NBD,[38] phenothiazine,[39] rhodamine,[40] and naphthalimide.[41] Nevertheless, they have a limitation for practical application due to the poor solubility in water. Only two examples are soluble in a near-perfect aqueous media. For the practical and efficient usage of chemosensor, it is highly demanded to develop colorimetric chemosensors working in water.[42]

Chemosensors using cinnamaldehyde moiety were applied to detect metal cations because its long conjugation could induce a unique spectral change by binding to metal ions. [43,44] However, the low solubility of the cinnamaldehyde moiety in water was a big obstacle to development of the cinnamaldehyde-based practical chemosensors.^[45] For solving this problem, we envisioned to use a thiophene derivative having a hydrazide functional group, which would have a good watersoluble property. [46] Hence, we expected that the combination of cinnamaldehyde and thiophene-2-carbohydrazide would have better water solubility and show a unique spectral change to heavy metal ions.

Herein, we presented a new cinnamaldehyde-based chemosensor **TAA**, which detected Cu²⁺ and Hg²⁺ by color change in a near-perfect aqueous media. Moreover, TAA was applied to real water samples for the analysis of Cu²⁺ and Hg²⁺ ions. Possible binding structures and detection processes of TAA to Cu²⁺ and Hg²⁺ ions were demonstrated, based on ESI-MS, Job plot and DFT calculations.

Results and Discussion

TAA was given by the reaction of 4-(dimethylamino)cinnamaldehyde and thiophene-2-carbohydrazide (Scheme 1). It was verified with ¹H and ¹³CNMR (Figures S1 and S2), elemental analysis and ESI-MS.

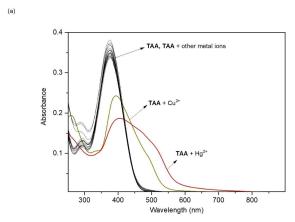
Department of Fine Chem., (SNUT) Seoul National Univ. of Sci. and Tech., Seoul 01187, Korea

Tel: +82-2-971-6680 Fax: +82-2-970-9140 E-mail: ch920812@naver.com

chealkim@snut.ac.kr

Supporting information for this article is available on the WWW under https://doi.org/10.1002/slct.201900199

[[]a] H. Cho, J. B. Chae, Prof. C. Kim



Scheme 1. Synthesis of TAA.

Colorimetric detection of Cu2+

Chromogenic selectivity of **TAA** to metal ions with biological and environmental significance was studied in bis-tris buffer (Figure 1). Only Cu²⁺ and Hg²⁺ ions induced remarkable UV-

Figure 1. (a) UV-visible changes of **TAA** (10 μ M) on addition of diverse cations (2.0 equiv, 20 μ M) in bis-tris buffer (pH 7.0, 10 mM). (b) Photograph of **TAA** (10 μ M) and **TAA** with diverse cations (2.0 equiv, 20 μ M) in bis-tris buffer (pH 7.0, 10 mM).

visible change of **TAA** at 480 nm and 518 nm, respectively. The results were consistent with the photograph (Figure 1(b)). **TAA** showed color changes from pale yellow to deep yellow with Cu^{2+} ion and to orange with Hg^{2+} ion. In contrast, spectral and color changes were not observed with other cations. Thus, **TAA** can be a strong candidate of a visible sensor for both Cu^{2+} and Hg^{2+} .

The binding character of **TAA** with Cu²⁺ ion was checked by UV-visible titration (Figure 2). On the addition of Cu²⁺ ion to **TAA**, the absorption of 380 nm prominently decreased, whereas a novel band at 480 nm consistently increased and reached to a maximum with 2.0 equiv. of Cu²⁺ ion. One isosbestic point

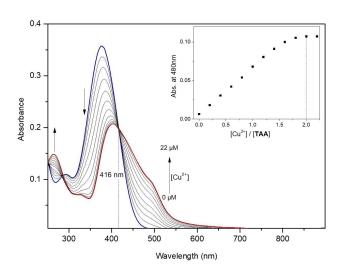


Figure 2. Absorption variations of TAA (10 μ M) with Cu²+ ions (0-2.2 equiv) in bis-tris buffer (pH 7.0, 10 mM). Inset: Plot of the absorbance (480 nm) vs. the amount of Cu²+.

was shown at 416 nm, signifying that a complex was made from TAA upon binding with Cu^{2+} ion.

For further understanding of binding mode, we carried out Job plot analysis (Figure S3). The absorbance at 480 nm showed the highest at mole fraction 0.5, which indicates a 1:1 stoichiometry between **TAA** and Cu²+. In addition, the ratio of 1:1 was verified by a positive-ion ESI-MS experiment (Figure 3). In the MS spectrum of **TAA** with 1 equiv. of Cu²+, m/z peak at 517.08 could be assigned as [**TAA**-H++Cu²+]+ + 2·DMSO, which was well matched with the calculated m/z value (517.06). We tried to conduct ¹HNMR titration of **TAA** with Cu²+ ion, but we could not obtain reliable data owing to paramagnetic property of Cu²+ ion. With the results of Job plot and ESI-MS, we envisioned plausible binding structure in Scheme 2. Binding constant (K) of $2.9 \times 10^4 \, \text{M}^{-1}$ was given for Cu²+-**TAA** using Li's equation (Figure S4). [47]

The competing selectivity of **TAA** as a chromogenic sensor for the sensing of Cu²⁺ was studied with diverse competing cations (Figure 4). **TAA** was treated with 2.0 equiv. of Cu²⁺ with the same amount of other cations. Most metal ions did not show absorption interference for the sensing of Cu²⁺ ion, except Co²⁺ and K⁺ ions, which interfered with about 20%. Nevertheless, their color change was discernible enough. Thus, **TAA** could be a valuable colorimetric sensor for Cu²⁺ ion with diverse competing cations. We tested the effect of pH on the

2796

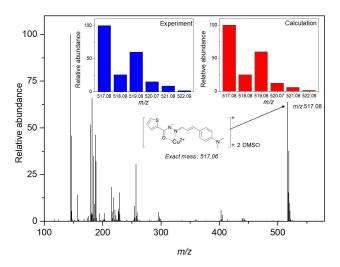
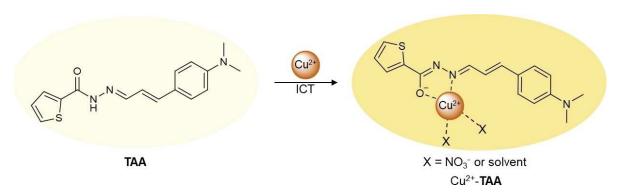


Figure 3. Positive-ion ESI-MS of TAA (10 μ M) on addition of Cu(NO₃)₂.

spectral response of TAA to Cu²⁺ in a pH range from 6 to 9 (Figure S5). The remarkable spectral change of Cu²⁺-TAA was observed between pH 6 and 9, suggesting that Cu²⁺ ion can be detected with **TAA** over the environmental pH range of 6–9.

The detection ability of TAA towards Cu²⁺ was studied in water samples. With the calibration plot of TAA toward Cu²⁺ (Figure 5), each sample was analyzed three times (Table 1).

Table 1. Measurement of Cu ²⁺ .a						
Sample	Cu^{2+} added (μ M)	Cu ²⁺ found (μM)	Recovery (%)	R.S.D. (n = 3) (%)		
Tap water	0.00 3.00	0.00 2.90	- 96.7	- 0.34		
Drinking water	0.00	0.00	-	-		
	3.00	2.95	98.3	0.64		
a Conditions: [TAA] = 10 μM in bis-tris buffer.						

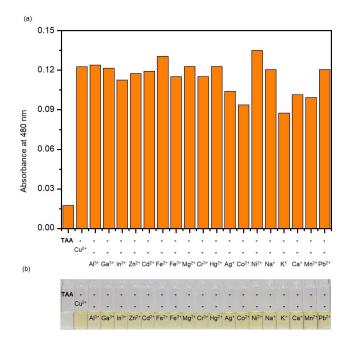

Reliable recoveries and R.S.D. (relative standard deviation) were given from the water samples. In addition, detection limit (30/ K) of **TAA** toward Cu^{2+} was given as 0.08 μM (Figure 5), which is much below the WHO protocol (31.4 µM) for Cu²⁺ ion. [48] Surprisingly, the number is the lowest detection limit among those formerly addressed chemosensors for detecting both Cu²⁺ and Hg²⁺ in different colors (Table S1). These consequences demonstrated that TAA could be applicable for determination of Cu²⁺ level with an acceptable accuracy and precision.

Colorimetric detection of Hg2+

The binding character of TAA to Hg²⁺ ions was checked by UVvisible titration (Figure 6). On the addition of Hg²⁺ to **TAA**, the absorption of 390 nm decreased prominently and a novel broad absorption of 518 nm increased consistently and reached a maximum at 0.5 equiv. of Hg^{2+} ion with the color change from pale yellow to orange. Two defined isosbestic points were formed at 280 and 420 nm, signifying that a species was produced from TAA upon binding with Hg²⁺. The Job plot test afforded a 2:1 ratio of TAA to Hg²⁺ (Figure S6). Its result was verified by ESI-MS analysis (Figure S7). The peak of 799.19 (m/z) could be assigned as $[2\cdot TAA-H^+ + Hg^{2+}]^+$ (calcd m/z 799.18).

To understand binding mode, we conducted ¹HNMR titration (Figure 7). TAA showed a tautomer structure between the amide form (11.68 ppm) and the imidic acid one (11.39 ppm). When 0.5 euqiv of Hg²⁺ was added, the peak (H₄) disappeared. The imine proton H₅ significantly moved to downfield, while the protons on the thiophene and cinnamaldehyde moieties showed small shifts. These results indicated that the carbonyl group and the imine moiety of TAA might be involved in binding with Hg²⁺. With the results of ESI-MS, ¹HNMR titration and Job plot, we envisioned the reasonable binding character of Hg²⁺-2·TAA in Scheme 3. Based on the 2:1 ratio, binding constant (K) of $2 \times 10^9 \,\mathrm{M}^{-2}$ was given for Hg^{2+} -2·TAA using Li's equation (Figure S8).[47]

The competing selectivity of TAA as a chromogenic sensor for the sensing of Hg²⁺ was checked with diverse competing cations (Figure 8). TAA was treated 0.5 equiv. of Hg²⁺ with the same amount of other cations. There was no prominent interference for the sensing of Hg²⁺ with other cations. Therefore, TAA could operate as an outstanding colorimetric probe for Hg²⁺ with diverse competing cations.



Scheme 2. Plausible binding structure of TAA with Cu²⁺ ion.

Wiley Online Library

Figure 4. (a) Bar graph (480 nm) for the interaction of **TAA** toward Cu^{2+} and other competing metal ions in bis-tris buffer (pH 7.0, 10 mM). (b) Photograph of **TAA**, Cu^{2+} -**TAA** and Cu^{2+} -**TAA** + other metal ions in bis-tris buffer (pH 7.0, 10 mM).

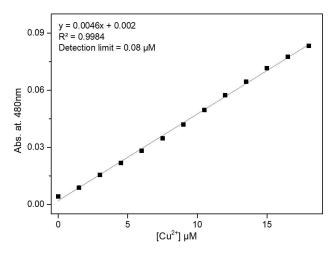


Figure 5. Calibration curve of TAA (10 $\mu\text{M})$ with Cu^{2+} in bis-tris buffer (pH 7.0, 10 mM).

We tested the effect of pH on the spectral response of **TAA** to Hg^{2+} in pH values of 6 to 9 (Figure S9). The significant absorbance change of Hg^{2+} -2·**TAA** was observed between pH 7 and 9, demonstrating that **TAA** could be applicable for detecting Hg^{2+} over the pH range of 7–9.

Moreover, we conducted real water-sample application using tap and drinking water to examine the feasibility of **TAA** for quantification of Hg^{2+} . The calibration curve was used for calculating R.S.D. and recovery (Figure S10). Reliable R.S.D. and recovery values were afforded (Table 2). The limit of detection (3 σ /K) of **TAA** for Hg^{2+} was found out to be 0.01 μ M, as low as

ChemistrySelect 2019, 4, 2795 - 2801

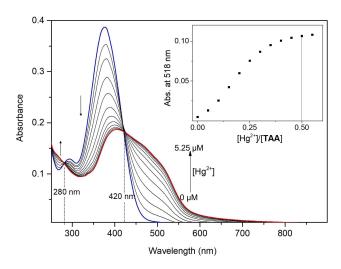


Figure 6. Absorption variations of TAA (10 μ M) on addition of Hg²⁺ ions (0 - 0.525 euiv) in bis-tris buffer (pH 7.0, 10 mM). Inset: Plots of the absorbance (518 nm) vs. the amount of Hg²⁺.

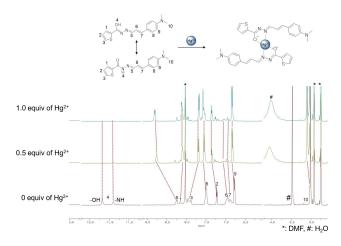
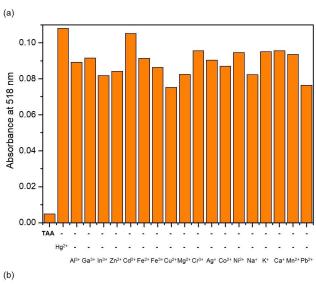


Figure 7. ¹H NMR titration of TAA with Hg²⁺.


Table 2. Measurement of Hg ²⁺ . ^a						
Sample	Hg ²⁺ added (μM)	Hg ²⁺ found (μM)	Recovery (%)	R.S.D. (n = 3) (%)		
Tap water	0.00	0.00	-	-		
	1.25	1.27	101.6	1.40		
Drinking water	0.00	0.00	-	-		
	1.25	1.24	99.2	1.12		
a Conditions: [TAA] = 10 μM in bis-tris buffer.						

0.01 μ M regulated by United States Environmental Protection Agency for Hg²⁺.^[49] Therefore, **TAA** could reliably quantify Hg²⁺ in real samples with a low detection limit. Importantly, the detection limit of **TAA** to Hg²⁺ ion was also the lowest among those formerly addressed colorimetric sensors for detecting both Cu²⁺ and Hg²⁺ ions in different colors (Table S1).

Scheme 3. Plausible binding structure of TAA with Hg²⁺.

Figure 8. (a) Bar graph (480 nm) for the interaction of **TAA** (10 μ M) toward Hg²⁺ and other competing cations (0.5 equiv) in bis-tris buffer (pH 7.0, 10 mM). (b) Photograph of **TAA**, Hg²⁺-2·**TAA**, and Hg²⁺-2·**TAA** + other metal ions in bis-tris buffer (pH 7.0, 10 mM).

Theoretical calculations

ChemistrySelect 2019, 4, 2795 - 2801

All calculations were conducted based on the experimental data. The optimized forms of **TAA**, Cu^{2+} -**TAA**, Hg^{2+} -2·**TAA** are presented in Figure 9. The calculated structure of **TAA** was flat with a dihedral angle of 179.99° (1O, 2 C, 3 N, 4 N). The addition of Cu^{2+} and Hg^{2+} ions to **TAA** changed the structure of **TAA** slightly. The dihedral angle of Cu^{2+} -**TAA** complex changed from 179.99° to -2.278°. Hg^{2+} -2·**TAA** showed a tetrahedral structure with a dihedral angle of -6.045°.

By using these optimized structures, we calculated TD-DFT and analyzed possible transitions. **TAA** showed a major absorption at 347.53 nm, which corresponded to intramolecu-

lar charge transfer (ICT) from the cinnamaldehyde moiety to the thiophene one (Figures S11 and S13). Cu²⁺-TAA complex showed small ICT and LMCT (Figures S12 and S13). The redshifted UV-vis spectrum matched the decreased energy gap. In case of Hg²⁺-2·TAA, the major transition appeared at 455.26 nm, which corresponded with ICT (Figures S14 and S15). The second major transition also showed ICT (435.37 nm). Since these transitions might induce larger ICT in Hg²⁺-2·TAA than in Cu²⁺-TAA, different absorption and color changes were observed. Based on experimental and theoretical results, we envisioned the possible structures and sensing mechanisms of Cu²⁺-TAA and Hg²⁺-2·TAA in Schemes 2 and 3.

Conclusions

We presented a cinnamaldehyde-based chemosensor **TAA** for colorimetric sensing of Cu^{2+} and Hg^{2+} ions by different color changes from pale yellow to deep yellow and orange in aqueous media. The detection limits turned out to be 0.08 μ M for Cu^{2+} and 0.01 μ M for Hg^{2+} , which are the lowest among those previous reported chemosensors for detecting both Cu^{2+} and Hg^{2+} in different colors. For the practical application, **TAA** was well applied to real samples for the analysis of both Cu^{2+} and Hg^{2+} . Based on ESI-MS, Job plot and DFT calculations, different binding structures and sensing mechanisms of Cu^{2+} -**TAA** and Hg^{2+} -2-**TAA** were demonstrated. Therefore, we expected that **TAA** would contribute to designing a new type of cinnamaldehyde-based sensors for detecting metal ions.

Supporting Information Summary

Experimental methods, Job plot analyses, binding constants, detection limits, pH test, ESI-mass spectra, DFT calculations are provided in the supplementary information.

Acknowledgements

The National Research Foundation of Korea (NRF) (2018R1 A2B6001686) was kindly supported for this work.

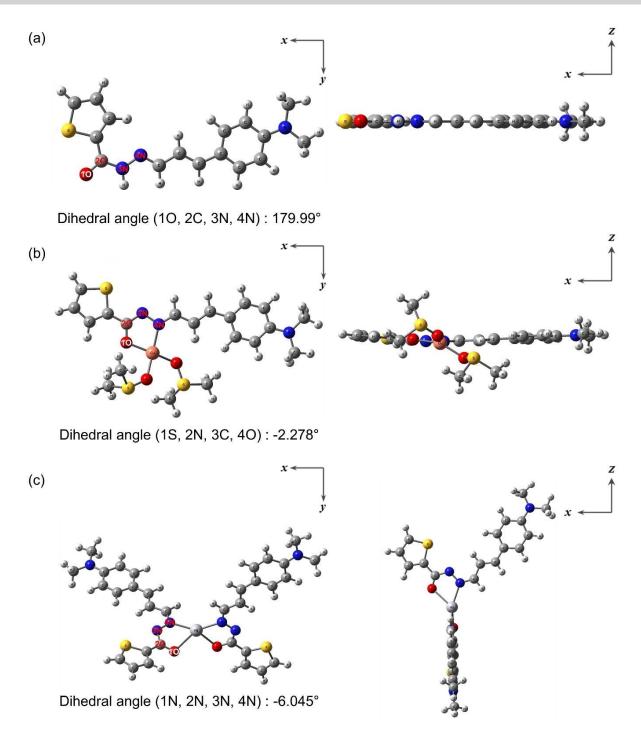


Figure 9. Energy-optimized structures of (a) TAA, (b) Cu²⁺-TAA, and (c) Hg²⁺-2·TAA.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: chemosensor \cdot cinnamaldehyde \cdot copper ions \cdot DFT calculations \cdot mercury ions

- [1] J.-Z. Ge, Y. Zou, Y.-H. Yan, S. Lin, X.-F. Zhao, Q.-Y. Cao, J. Photochem. Photobiol. A Chem. 2016, 315, 67–75.
- [2] D. Udhayakumari, S. Naha, S. Velmathi, Anal. Methods. 2017, 9, 552–578.
- [3] N. K. Hien, N. C. Bao, N. T. Ai Nhung, N. T. Trung, P. C. Nam, T. Duong, J. S. Kim, D. T. Quang, *Dyes Pigm.* 2015, 116, 89–96.
- [4] X. Jin, H. Chen, W. Zhang, B. Wang, W. Shen, H. Lu, Appl. Organomet. Chem. 2018, 32, e4577.
- [5] B. Kaur, N. Kaur, S. Kumar, Coord. Chem. Rev. 2018, 358, 13–69.
- [6] H. J. Jang, T. G. Jo, C. Kim, RSC Adv. 2017, 7, 17650–17659.
- [7] D. Xu, L. Tang, M. Tian, P. He, X. Yan, Tetrahedron Lett. 2017, 58, 3654–3657.

- [8] Y. J. Na, Y. W. Choi, J. Y. Yun, K.-M. Park, P.-S. Chang, C. Kim, Spectrochim. Acta A. 2015, 136, 1649–1657.
- [9] T. He, C. Lin, Z. Gu, L. Xu, A. Yang, Y. Liu, H. Fang, H. Qiu, J. Zhang, S. Yin, Spectrochim. Acta A. 2016, 167, 66–71.
- [10] G. R. You, G. J. Park, J. J. Lee, C. Kim, Dalton Trans. 2015, 44, 9120-9129.
- [11] D. Maity, A. K. Manna, D. Karthigeyan, T. K. Kundu, S. K. Pati, T. Govindaraju, Chem. Eur. J. 2011, 17, 11152–11161.
- [12] M. Pannipara, A. G. Al-Sehemi, A. Irfan, M. Assiri, A. Kalam, Y. S. Al-Ammari, Spectrochim. Acta A. 2018, 201, 54–60.
- [13] L. Chang, Q. Gao, S. Liu, C. Hu, W. Zhou, M. Zheng, Dyes Pigm. 2018, 153, 117–124.
- [14] T. Puangsamlee, Y. Tachapermpon, P. Kammalun, K. Sukrat, C. Wainiphithapong, J. Sirirak, N. Wanichacheva, J. Lumin. 2018, 196, 227–235
- [15] D. Maity, T. Govindaraju, Chem. Eur. J. 2011, 17, 1410-1414.
- [16] D. Maity, D. Karthigeyan, T. K. Kundu, T. Govindaraju, Sens. Actuators B. 2013, 176, 831–837.
- [17] J. Dong, J. Hu, H. Baigude, H. Zhang, Dalton Trans. 2018, 47, 314-322.
- [18] S. M. Hwang, J. B. Chae, C. Kim, Bull. Korean Chem. Soc. 2018, 39, 925–930
- [19] A. K. Mahapatra, G. Hazra, N. K. Das, S. Goswami, Sens. Actuators B. 2011, 156, 456–462.
- [20] N. Narayanaswamy, T. Govindaraju, Sens. Actuators B. 2012, 161, 304–310.
- [21] S. Goswami, D. Sen, N. K. Das, Org. Lett. 2010, 12, 856-859.
- [22] D. Maity, A. Raj, D. Karthigeyan, T. K. Kundu, T. Govindaraju, RSC Adv. 2013, 3, 16788–16794.
- [23] P. Makam, R. Shilpa, A. E. Kandjani, S. R. Periasamy, Y. M. Sabri, C. Madhu, S. K. Bhargava, T. Govindaraju, Biosens. Bioelectron. 2018, 100, 556–564.
- [24] K. Zhong, X. Zhou, R. Hou, P. Zhou, S. Hou, Y. Bian, G. Zhang, L. Tang, X. Shang, *RSC Adv.* **2014**, *4*, 16612–16617.
- [25] M. Pandeeswar, S. P. Senanayak, T. Govindaraju, ACS Appl. Mater. Interfaces. 2016, 8, 30362–30371.
- [26] Y. Gao, C. Zhang, S. Peng, H. Chen, Sens. Actuators B. 2017, 238, 455–461.
- [27] A. K. Müller, K. Westergaard, S. Christensen, S. J. Sørensen, FEMS Microbiol. Ecol. 2001, 36, 11–19.
- [28] M. Ponram, U. Balijapalli, B. Sambath, S. K. Iyer, V. B. R. Cingaram, K. Natesan Sundaramurthy, New J. Chem. 2018, 42, 8530–8536.
- [29] X. He, J. Zhang, X. Liu, L. Dong, D. Li, H. Qiu, S. Yin, Sens. Actuators B. 2014, 192, 29–35.
- [30] L. He, H. Tao, S. Koo, G. Chen, A. Sharma, Y. Chen, I.-T. Lim, Q.-Y. Cao, J. S. Kim, ACS Appl. Bio Mater. 2018, 1, 871–878.

- [31] T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee, C. Kim, New J. Chem. 2015, 39, 2580–2587.
- [32] S. Bavindir, J. Photochem. Photobiol. A Chem. 2019, 372, 235-244.
- [33] X. He, J. Zhang, X. Liu, L. Dong, D. Li, H. Qiu, S. Yin, Sens. Actuators B. 2014, 192, 29–35.
- [34] W. J. Shi, J. Y. Liu, D. K. P. Ng, Chem. Asian. J. 2012, 7, 196-200.
- [35] J. Huang, X. Ma, B. Liu, L. Cai, Q. Li, Y. Zhang, K. Jiang, S. Yin, J. Lumin. 2013, 141, 130–136.
- [36] W.-C. Lin, C.-Y. Wu, Z.-H. Liu, C.-Y. Lin, Y.-P. Yen, *Talanta*. 2010, 81, 1209–1215.
- [37] R. Martínez, A. Espinosa, A. Tárraga, P. Molina, Org. Lett. 2005, 7, 5869–5872.
- [38] J. Park, B. In, L. N. Neupane, K.-H. Lee, Analyst. 2015, 140, 744–749.
- [39] M. Kaur, M. J. Cho, D. H. Choi, Dyes Pigm. 2016, 125, 1-7.
- [40] M. Wang, F. Yan, Y. Zou, L. Chen, N. Yang, X. Zhou, Sens. Actuators B. 2014, 192, 512–521.
- [41] H. Mu, R. Gong, Q. Ma, Y. Sun, E. Fu, Tetrahedron Lett. 2007, 48, 5525–5529.
- [42] S. Manna, P. Karmakar, K. Maiti, S. S. Ali, D. Mandal, A. K. Mahapatra, J. Photochem. Photobiol. A Chem. 2017, 343, 7–16.
- [43] S. Y. Lee, J. J. Lee, K. H. Bok, J. A. Kim, Y. K. So, C. Kim, Inorg. Chem. Commun. 2016, 70, 147–152.
- [44] J. M. Jung, C. Kim, R. G. Harrison, Sens. Actuators B. 2018, 255, 2756–2763.
- [45] D. Peralta-Domínguez, M. Rodríguez, G. Ramos-Ortíz, J. L. Maldonado, M. A. Meneses-Nava, O. Barbosa-García, R. Santillan, N. Farfán, Sens. Actuators B. 2015, 207, 511–517.
- [46] F. E. Anderson, J. M. Prausnitz, Fluid Phase Equilib. 1986, 32, 63-76.
- [47] R. Yang, K. Li, K. Wang, F. Zhao, N. Li, F. Liu, *Anal. Chem.* **2003**, *75*, 612–621
- [48] World Health Organization. Office of Library and Health Literature Services. (1988). Styles for bibliographic citations: guidelines for WHOproduced bibliographies, 2nd ed. Geneva: World Health Organization. http://www.who.int/iris/handle/10665/62429.
- [49] U. S. EPA (Environmental Protection Agency), EPA 810/K-92-001. 1992, https://www.epa.gov/dwstandardsregulations/secondary-drinkingwater-standards-guidance-nuisance-chemicals#table-of-secondary.

Submitted: January 18, 2019 Accepted: February 19, 2019